Nonconvex Regularized Gradient Projection Sparse Reconstruction for Massive MIMO Channel Estimation
نویسندگان
چکیده
Novel sparse reconstruction algorithms are proposed for beamspace channel estimation in massive multiple-input multiple-output systems. The minimize a least-squares objective having nonconvex regularizer. This regularizer removes the penalties on few large-magnitude elements from conventional $\ell _{1}$ -norm regularizer, and thus it only forces remaining that expected to be zeros. Accurate fast reconstructions can achieved by performing gradient projection updates within framework of difference convex functions (DC) programming. A double-loop algorithm single-loop via different DC decompositions, these two have distinct computational complexities convergence rates. An extension is further designing new step sizes algorithm. has faster rate achieve approximately same level accuracy as Numerical results show significant advantages over existing terms accuracies runtimes. Compared with benchmark approaches, smaller error higher achievable spectral efficiency.
منابع مشابه
Hierarchical Sparse Channel Estimation for Massive MIMO
The problem of wideband massive MIMO channel estimation is considered. Targeting for low complexity algorithms as well as small training overhead, a compressive sensing (CS) approach is pursued. Unfortunately, due to the Kroneckertype sensing (measurement) matrix corresponding to this setup, application of standard CS algorithms and analysis methodology does not apply. By recognizing that the c...
متن کاملchannel estimation for mimo-ofdm systems
تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...
Semi-Blind Channel Estimation based on subspace modeling for Multi-user Massive MIMO system
Channel estimation is an essential task to fully exploit the advantages of the massive MIMO systems. In this paper, we propose a semi-blind downlink channel estimation method for massive MIMO system. We suggest a new modeling for the channel matrix subspace. Based on the low-rankness property, we have prposed an algorithm to estimate the channel matrix subspace. In the next step, using o...
متن کاملParametric channel estimation for massive MIMO
Channel state information is crucial to achieving the capacity of multi-antenna (MIMO) wireless communication systems. It requires estimating the channel matrix. This estimation task is studied, considering a sparse channel model particularly suited to millimeter wave propagation, as well as a general measurement model taking into account hybrid architectures. The contribution is twofold. First...
متن کاملComposite Channel Estimation in Massive MIMO Systems
We consider a multiuser (MU) multiple-input multiple-output (MIMO) time-division duplexing (TDD) system in which the base station (BS) is equipped with a large number of antennas for communicating with single-antenna mobile users. In such a system the BS has to estimate the channel state information (CSI) that includes large-scale fading coefficients (LSFCs) and small-scale fading coefficients ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Communications
سال: 2021
ISSN: ['1558-0857', '0090-6778']
DOI: https://doi.org/10.1109/tcomm.2021.3107582